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Abstract
Generalized coherent states for primary shape invariant potential systems
quantum deformed by different models are constructed using an algebraic
approach based on supersymmetric quantum mechanics. We show that this
generalized formalism is able (a) to supply the essential requirements necessary
to establish a connection between classical and quantum formulations of a
given system, (b) to reproduce, as particular cases, results already known for
shape-invariant systems (such as standard harmonic oscillator and Pöschl–
Teller potentials as well as quantum deformed harmonic oscillator models) and
(c) point to a formalism that provides a unified description of the different kind
of coherent states for quantum systems, deformed or not deformed.

PACS numbers: 02.20.Uw, 03.65.Fd, 03.65.Ge

1. Introduction

Coherent states were first introduced by Schrödinger [1], who was interested in finding
quantum-mechanics states which provide a close connection between quantum and classical
formulations of a given physical system. Based on the Heisenberg–Weyl group and applied
specifically to the harmonic oscillator system, the original coherent state introduced by
Schrödinger has been extended to a large number of Lie groups with square integrable
representation [2]. Today these extensions represent many applications in a number of fields
of quantum theory, and especially in quantum optics and radiophysics. In particular, they are
used as bases of coherent states path integrals [3] or dynamical wavepackets for describing
the quantum systems in semi-classical approximations [4]. There are different definitions of
coherent states. The first one, often called Barut–Girardello coherent states [5], assumes that
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the coherent states are eigenstates with complex eigenvalues of an annihilation group operator.
The second definition, often called Perelomov coherent states [6], assumes the existence of
an unitary z-displacement operator whose action on the ground state of the system gives the
coherent state parameterized by z, with z ∈ C. The last definition, based on the Heisenberg
uncertainty relation, often called intelligent coherent states [7], assumes that the coherent
state gives the minimum-uncertainty value �x�p = h̄

2 , and maintains this relation in time
because of its temporal stability. These three different definitions are equivalent only in the
special case of the Heisenberg–Weyl group, the dynamical symmetry group of the harmonic
oscillator.

A class of generalized coherent states which has evoked a lot of interest is connected with
deformed harmonic oscillator algebras. The development of quantum groups and quantum
algebras motivated great interest in q-deformed algebraic structures, and in particular in the
q-harmonic oscillators. Until now quantum groups have found applications in solid-state
physics [8], nuclear physics [9, 10], quantum optics [11] and conformal field theories [12].
Quantum algebras are deformed versions of the usual Lie algebras obtained by introducing
a deformation parameter q. In this sense the quantum algebras provide us with a class of
symmetries which is richer than the usual class of Lie symmetries; the latter is contained in
the former as a special case (when q → 1). Therefore the quantum algebras may turn out to
be appropriate tools for describing symmetries of physical systems which cannot be described
by ordinary Lie algebras.

In a parallel development, the extension of coherent states for systems other than the
harmonic oscillator has attracted much attention for the past several years [13–17]. There are
a large number of different approaches to this problem and the one to be presented here is
based on the supersymmetric quantum mechanics. Supersymmetric quantum mechanics [18]
deals with pairs of Hamiltonians Ĥ and Ĥ ′ which have the same energy spectra, but different
eigenstates. A number of such pairs of Hamiltonians share an integrability condition called
shape invariance [19]. Although not all exactly solvable problems are shape-invariant, shape
invariance, especially in its algebraic formulation [16, 20, 21], is a powerful technique to study
exactly solvable systems.

In earlier papers, by using an algebraic approach, we introduced coherent states for
self-similar potentials [16], a class of shape-invariant systems, and presented a possible
generalization of these coherent-states and its relation with Ramanujan’s integrals [17]. After
that we extended this generalized formalism to all shape-invariant systems in [22]. Later
we introduced a quantum deformed theory [23] applicable to all shape-invariant systems by
defining q-deformed ladder operators that satisfy q-deformed commutation relations. The
purpose of the present paper is to build generalized coherent states for the quantum deformed
models obtained from the primary shape-invariant systems in our previous paper [23] and show
that these generalized coherent states satisfy the essential principles embodied in Schrödinger’s
original idea. It is worth noting that until now the studies involving the extension of coherent
states for q-deformed systems were restricted to the harmonic oscillator models. In this sense
the plan of this paper is as follows: for the sake of completeness we will briefly review the
fundamentals principles of the algebraic formulation to shape invariance in section 2 and the
basic facts of the algebraic q-deformed theory for shape-invariant systems in section 3. In
section 4 we introduce the fundamentals principles of our generalized coherent states and its
basic properties. We apply our general formalism and work out some possible examples of
coherent states to q-deformed primary shape-invariant systems in section 5 and show that the
known results found in the literature for the q-deformed harmonic oscillator can be obtained
with particular cases of our generalized expression. Finally, conclusion and brief remarks
close the paper in section 6.
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2. Algebraic formulation to shape invariance

Supersymmetric quantum mechanics is generally studied in the context of one-dimensional
systems. The partner Hamiltonians Ĥ = − h̄2

2M
d2

dx2 + V−(x) = h̄�Â†Â and Ĥ ′ =
− h̄2

2M
d2

dx2 + V+(x) = h̄�ÂÂ† can be written in terms of the dimensionless operators

Â ≡ {W(x) + ip̂/
√

2M}/√h̄� and Â† ≡ {W(x) − ip̂/
√

2M}/√h̄�, where h̄� is a constant
energy scale factor and W(x) is the superpotential which is related to the partner potentials via
V±(x) = W 2(x) ± h̄√

2M

dW(x)

dx
. The Hamiltonian Ĥ is called shape-invariant if the condition

Â(a1)Â
†(a1) = Â†(a2)Â(a2) + R(a1) is satisfied [19]. The parameter a2 of the Hamiltonian

is a function of its parameter a1 and the remainder R(a1) is independent of the dynamical
variables such as position and momentum. In the cases studied so far, the parameters a1 and a2

are related by either a translation [20, 24] or a scaling [16, 17, 25]. Introducing the similarity
transformation T̂ (a1)Ô(a1)T̂

†(a1) = Ô(a2) that replace a1 with a2 in a given operator and
the operators

B̂+ = Â†(a1)T̂ (a1) and B̂− = B̂†
+ = T̂ †(a1)Â(a1), (1)

the partner Hamiltonians take the forms Ĥ = h̄�Ĥ− and Ĥ ′ = h̄�T̂ Ĥ+T̂
†, where

Ĥ± = B̂∓B̂±, and the condition of shape invariance can be written as the commutation
relation

[B̂−, B̂+] = T̂ †(a1)R(a1)T̂ (a1) ≡ R(a0) (2)

where we used the identity R(an) = T̂ (a1)R(an−1)T̂
†
(a1) valid for any n ∈ Z. The

commutation relation (2) suggests that B̂− and B̂+ are the appropriate creation and annihilation
operators for the spectra of the shape-invariant potentials provided that their non-commutativity
with R(a1) is taken into account. The additional relations

R(an)B̂+ = B̂+R(an−1) and R(an)B̂− = B̂−R(an+1) (3)

readily follow from these results.
The ground state of the Hamiltonian Ĥ− satisfies the condition Â|�0〉 = 0 = B̂−|�0〉

and using the relations above it is possible to show that its nth excited eigenstate

Ĥ−|�n〉 = en|�n〉 and Ĥ+|�n〉 = {en + R(a0)}|�n〉 (4)

can be written in a normalized form as

|�n〉 = 1√
R(a1) + R(a2) + · · · + R(an)

B̂+ · · · 1√
R(a1) + R(a2)

B̂+
1√

R(a1)
B̂+|�0〉 (5)

with the related eigenvalues en given by e0 = 0 and

en =
n∑

k=1

R(ak), for n � 1. (6)

3. Quantum deformation of shape-invariant systems

The studies of the quantum algebras are concentrated mainly to the harmonic oscillator
quantum systems, the simplest shape-invariant potential. In a previous study [23] we developed
several quantum deformed models applicable to all shape-invariant potential systems. In that
paper, introducing q-deformed forms for the primary creation and annihilation operators B̂±,
we define new q-deformed ladder operators and obtain their q-commutations relations. In this
section we briefly illustrate this procedure. Further details are given in [23].
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3.1. Generalized standard q-deformed model

The q-deformed forms for the creation and annihilation operators can be defined as

B̂
(q)
± ≡ {

B̂
(q)
∓
}† = B̂±

√
[B̂∓B̂±]q
B̂∓B̂±

=
√

[B̂±B̂∓]q
B̂±B̂∓

B̂±, (7)

where we used the q-operators extension of the q-numbers definition [x]q ≡ (qx −
q−x)/(q − q−1) and took into account that for any analytical function f (x) the property
B̂±f (B̂∓B̂±) = f (B̂±B̂∓)B± is valid. Since limq→1[x]q = x, in this limit the postulated
relations (7) tend to the usual generalized ladder operators (1). With the q-deformed ladder
operators we can write down the q-deformed form of the Hamiltonian Ĥ as

Ĥ
(q)

B = h̄�B̂
(q)
+ B̂

(q)
− = h̄�[B̂+B̂−]q and B̂

(q)
− B̂

(q)
+ = [B̂−B̂+]q . (8)

Since [Ĥ (q)

B , Ĥ ] = 0, these Hamiltonians have the common set of eigenstates |�n〉 give by
equation (5). Taking into account equations (4), (7) and (8), we can show that

Ĥ
(q)

B |�n〉 = h̄�[en]q |�n〉 and B̂
(q)
− B̂

(q)
+ |�n〉 = [en + R(a0)]q |�n〉. (9)

Using equations (8) and relation (2) we can obtain the q-commutation relation between the
B̂

(q)
± operators

B̂
(q)
− B̂

(q)
+ − q±R(a0)B̂

(q)
+ B̂

(q)
− = [R(a0)]qq

∓B̂+B̂− . (10)

3.2. Generalized standard Q-deformed models

As a second way to construct a q-deformed model for a shape-invariant potential we define
the operators

Ĉ
(q)
± = {Ĉ(q)

∓ }† = 1√
q

q
1
2 (B̂±B̂∓)B̂

(q)
± = 1√

q
B̂

(q)
± q

1
2 (B̂∓B̂±). (11)

Using the results of equations (8), relation (2) and the commutation between any function
of the remainders R(an) and the couple of operators B̂±B̂∓, it is possible to establish the
q-deformed commutation relation

Ĉ
(q)
− Ĉ

(q)
+ − q2R(a0)Ĉ

(q)
+ Ĉ

(q)
− = qR(a0)[R(a0)]q/q. (12)

There is an alternative quantum numbers definition called the Q-numbers and given by
[x]Q = (Qx −1)/(Q−1). Using the Q-operators generalization of this definition and changing
q2 → Q, it is possible to rewrite (11) as

Ĉ
(q)
± ≡ B̂

(Q)
± = B̂±

√
[B̂∓B̂±]Q
B̂∓B̂±

=
√

[B̂±B̂∓]Q
B̂±B̂∓

B̂± (13)

and show that the q-deformed commutation relation (12) can be rewritten in a Q-deformed
version as

B̂
(Q)
− B̂(Q)

+ − QR(a0)B̂(Q)
+ B̂

(Q)
− = [R(a0)]Q. (14)

With these definitions for quantum deformed ladder operators we can write down the Q-
deformed form of Ĥ as

Ĥ
(q)

C = h̄�Ĉ
(q)
+ Ĉ

(q)
− = h̄�B̂(Q)

+ B̂
(Q)
− = h̄�[B̂+B̂−]Q and B̂

(Q)
− B̂(Q)

+ = [B̂−B̂+]Q.

(15)
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Taking into account equations (4), (7), (9), (11), (15) and the commutation relation
[Ĥ (q)

C , Ĥ ] = 0, we conclude that these Hamiltonians have the common set of eigenstates
(5) which satisfy the eigenvalue equation

Ĥ
(q)

C |�n〉 = h̄�[en]Q|�n〉 and B̂
(Q)
− B̂(Q)

+ |�n〉 = [en + R(a0)]Q|�n〉. (16)

3.3. Generalized maths-type q-deformed model

Another q-deformed model can be obtained introducing the operators

D̂
(q)
− = q− 1

2 R(a0)B̂
(q)
− q

1
2 (B̂+B̂−) = q− 1

2 R(a0)q
1
2 (B̂−B̂+)B̂

(q)
− (17)

D̂
(q)
+ = {D̂(q)

− }† = q
1
2 (B̂+B̂−)B̂

(q)
+ q− 1

2 R(a0) = B̂
(q)
+ q

1
2 (B̂−B̂+)q− 1

2 R(a0). (18)

Using this definition and the results of equations (8) and (2) we establish the q-deformed
commutation relation

D̂
(q)
− D̂

(q)
+ − q[R(a0)+R(a1)]D̂

(q)
+ D̂

(q)
− = [R(a0)]q . (19)

On the other hand, with the operators D̂
(q)
± we can write down the correspondent q-deformed

form of Ĥ as

Ĥ
(q)

D = h̄�D̂
(q)
+ D̂

(q)
− = h̄�q−R(a1)q(B̂+B̂−)[B̂+B̂−]q and

D̂
(q)
− D̂

(q)
+ = q−R(a0)q(B̂−B̂+)[B̂−B̂+]q .

(20)

Since
[
Ĥ

(q)

D , Ĥ
] = 0, the common set of eigenstates (5) for these Hamiltonians satisfy the

eigenvalue equation

Ĥ
(q)

D |�n〉 = h̄�q(en−e1)[en]q |�n〉 and D̂
(q)
− D̂

(q)
+ |�n〉 = qen [en + R(a0)]q |�n〉. (21)

3.4. Quantum deformed shape-invariant systems

As shown in [23], the three previous quantum deformed models correspond to the shape-
invariant generalization of the standard Arik and Coon models [26], first introduced for the
harmonic oscillator potential systems. The q-deformed commutation relations (10), (12) and
(19) between the q-deformed ladder operators defined in each model show that the shape
invariance of the primary system, represented by the commutation relation (2), is broken after
the quantum deformation process. This shape invariance property is only recovered when we
take the limit of q → 1. Obviously it is a consequence of the basic assumptions used to
build the quantum-deformed models. However, taking advantage of the freedom permitted in
general for a primary shape-invariant system, it is possible to construct a q-deformed model
which, unlike the previous ones, preserves the shape invariance of the primary system after
the quantum deformation process. In this sense, we introduce the operators

Ŝ
(q)
− = FqB̂

(q)
− q

1
2 (B̂+B̂−) = Fqq

1
2 (B̂−B̂+)B̂

(q)
− and

Ŝ
(q)
+ = {Ŝ(q)

− }† = q
1
2 (B̂+B̂−)B̂

(q)
+ Fq = B̂

(q)
+ q

1
2 (B̂−B̂+)Fq

(22)

where Fq ≡ F(q; a0, a1, a2, . . .) ∈ R. Observe that the Hermitian conjugation condition of
Ŝ

(q)
± imply that q ∈ R. Using these definitions, the commutator (2) and equations (8) and (3)

it is possible get the commutator

[Ŝ(q)
− , Ŝ

(q)
+ ] = G0, with G0 ≡ F2

q qR(a0)[R(a0)]q (23)
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since we assume that the arbitrary functional Fq satisfies the constraint

T̂ (a1)F2
q T̂ †(a1) = q2R(a0)F2

q . (24)

Comparing equations (2) and (23) we conclude that the latter can be associated with a
shape invariance condition as the former and that Ŝ

(q)
− and Ŝ

(q)
+ are the appropriate creation

and annihilation operators for the spectra of the q-deformed shape-invariant systems whose
Hamiltonian is given by

Ĥ
(q)

S = h̄�Ŝ
(q)
+ Ŝ

(q)
− = h̄�q2R(a0)F2

q q(B̂+B̂−)[B̂+B̂−]q . (25)

With these definitions, relations (3) and equation (23) we can write down the additional
commutation relations[

Ĥ
(q)

S ,
(
Ŝ

(q)
+

)n] = +h̄�{G1 + G2 + · · · + Gn}
(
Ŝ

(q)
+

)n
,[

Ĥ
(q)

S ,
(
Ŝ

(q)
−
)n] = −h̄�(Ŝ

(q)
− )n{G1 + G2 + · · · + Gn}

(26)

where Gn = T̂ (a1)Gn−1T̂
†(a1). Using that B̂−|�0〉 = 0 and equations (7) and (22) we can also

show that Ŝ
(q)
− |�0〉 = 0. From this result and the commutator (26) it follows that

Ĥ
(q)

S

{(
Ŝ

(q)
+

)n|�0〉
} = h̄�{G1 + G2 + · · · + Gn}

{(
Ŝ

(q)
+

)n|�0〉
}
, (27)

i.e.,
∣∣�(S)

n

〉 ≡ (
Ŝ

(q)
+

)n|�0〉 is an eigenstate of the Hamiltonian Ĥ
(q)

S with the eigenvalue

E(S)
n = h̄�

n∑
k=1

Gk = h̄�q2R(a0)F2
q qen [en]q . (28)

4. Construction of generalized coherent states for q-deformed shape-invariant systems

Annihilation-operator coherent states for shape-invariant potentials were introduced in
[14, 16]. Here we follow the notation of [16]. Our first step is to introduce the necessary tools
to be used in this construction. After we obtain the coherent state we must verify if this state
satisfies the set of four essential requirements, introduced and discussed in [22, 27], necessary
for a close connection between classical and quantum formulations of a given system: (a)
label continuity; (b) overcompleteness or resolution of unity; (c) temporal stability; and (d)
action identity. The first two requirements are standard and rely on the algebraic structure
behind the system in question, while the last two are more general and relate to the classical
connection question. To work with a general formulation that can include the four different
q-deformations theories presented above, let us introduce the general q-deformed Hamiltonian
defined by Ĥ

(q)

X = h̄�Ĥ(q)

X with Ĥ(q)

X = X̂
(q)
+ X̂

(q)
− , where the generalized ladder operators can

represent X̂
(q)
± ≡ B̂

(q)
± , Ĉ

(q)
± , D̂

(q)
± orŜ(q)

± , and consequently Ĥ
(q)

X ≡ Ĥ
(q)

B , Ĥ
(q)

C , Ĥ
(q)

D orĤ (q)

S .

Obviously in this case, taking into account the results for each q-deformed model, we must
have that

Ĥ(q)

X |�n〉 ≡ X̂
(q)
+ X̂

(q)
− |�n〉 = ε(X)

n |�n〉, where

ε(X)
n =




[en]q , X ≡ B;
[en]Q , X ≡ C;
q(en−e1) [en]q , X ≡ D;
q2R(a0)F2

q qen [en]q , X ≡ S,

(29)

en being given by equation (6).
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4.1. Construction

Taking into account that B̂−|�0〉 = 0 and looking at definitions (7), (11), (17) and (22),
we conclude that the operator X̂

(q)
− does not have a left inverse in the Hilbert space of the

eigenstates of the Hamiltonian Ĥ
(q)

X . However, a right inverse for X̂
(q)
− , [X̂(q)

− {X̂(q)
− }−1 = 1̂],

can be defined. Similarly the inverse of Ĥ(q)

X does not exist, but{
Ĥ(q)

X

}−1
X̂

(q)
+ = {

X̂
(q)
−
}−1

(30)

does. Therefore, if we define the Hermitian conjugate operators K̂
(q)

X = X̂
(q)
−
{
Ĥ(q)

X

}−1/2
and{

K̂
(q)

X

}† = {
Ĥ(q)

X

}−1/2
X̂

(q)
+ , we can easily show that{

X̂
(q)
−
}−1 = {

Ĥ(q)

X

}−1/2{
K̂

(q)

X

}†
, (31)

and the normalized form of the nth excited state of Ĥ and Ĥ
(q)

X , given by (5), can be rewritten
as

|�n〉 = ({
K̂

(q)

X

}†)n|�0〉. (32)

Then, taking into account equations (6), (29), (31) and (32) we can prove that
{
X̂

(q)
−
}−n|�0〉 =

C(X)
n |�n〉, where

1

C
(X)
n

=
n−1∏
k=0

√
�

(X)
nk , with �

(X)
nk =




[en − ek]q, X ≡ B;
[en − ek]Q, X ≡ C;
q(en−ek+1)[en − ek]q, X ≡ D;
{qR(a0)Fq}2q(en+ek)[en − ek]q, X ≡ S.

(33)

Now we can define the generalized expression for the coherent state of the q-deformed
shape-invariant systems as

|z; q; as〉X =
∞∑

n=0

{
zZ(q)

s

(
X̂

(q)
−
)−1}n|�0〉 with z,Z(q)

s ∈ C. (34)

In this definition we used the shorthand notation Z(q)
s ≡ Z(q; a1, a2, a3, . . .) for an arbitrary

functional, introduced to establish a more general approach. With relation (3) we can prove
that |z; q; as〉X is an eigenstate of the q-deformed annihilation operator X̂

(q)
− since

X̂
(q)
− |z; q; as〉X = zZ(q)

s−1|z; q; as〉X where Z(q)

s−1 = T̂ †(a1)Z(q)
s T̂ (a1). (35)

4.2. Normalization

Using the action of the (X̂
(q)
− )−1 operator on the Hilbert space of the eigenstates

{|�n〉, n = 0, 1, 2, . . .} , and (3) we obtain the normalized Glauber’s form [28] of the coherent
state |z; q; as〉X as

|z; q; as〉X = NX(|z|2; q; as)

∞∑
n=0

{
zn

h
(X)
n (q; as)

}
|�n〉, where

NX(|z|2; q; as) = 1

/√√√√ ∞∑
n=0

|z|2n

|h(X)
n (q; as)|2

(36)

and we used the shorthand notation (as) ≡ [a1, a2, a3, . . .]. The expansion coefficients are
given by

h
(X)
0 (q; as) = 1 and h(X)

n (q; as) =
n−1∏
k=0

(√
�

(X)
nk

/
Z(q)

s+k

)
for n � 1 (37)
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with Z(q)

s+k = {T̂ (a1)}kZ(q)
s {T̂ †(a1)}k . It should be pointed out that the transformation

properties between the potential parameters an, imposed by shape invariance condition,
constrain the freedom in the definition of Z(q)

s . Besides that, when we consider relation
(37), this potential parameter dependence in Z(q)

s shows strong influence in the final
expression of the expansion coefficient h(X)

n (q; as) . Another aspect to detach about Z(q)
s

is its importance in the determination of the radius of convergence of the series which

gives NX(|z|2; q; as) since this radius is given by R = lim supn→+∞
n
√∣∣h(X)

n (q; as)
∣∣2.

To conclude, note that the coherent states |z; q; as〉X form an over-complete linearly
dependent set since, although they can be normalized, we have X〈z′; q; as |z; q; as〉X =
NX(|z′|2; q; as)NX(|z|2; q; as)

/
N 2

X(zz′∗; q; as).

4.3. Continuity of labelling

From the continuity of the overlapping factor between two different coherent states we can
show that the normalizable coherent state defined in (34) is continuous in the labels z and s. It
means that if we have (z, as) −→ (z′, as ′) then we will find that |z; q; as〉X −→ |z′; q; as ′ 〉X
or, in others words, if{

z − z′ → 0
s − s ′ → 0

�⇒ δz ≡
∣∣∣∣12 {|z; q; as〉X − |z′; q; as ′ 〉X}

∣∣∣∣
2

= 1 − Re{X〈z′; q; as ′ |z; q; as〉X} → 0. (38)

This condition can be easily verified if we use equation (36) to obtain

X〈z′; q; as ′ |z; q; as〉X =NX(|z′|2; q; as ′)NX(|z|2; q; as)

∞∑
n=0

{
(z′z)n

h
(X)∗
n (q; as ′)h

(X)
n (q; as)

}
(39)

and consider that this result gives a continuous function.

4.4. Overcompleteness

We now investigate the completeness or resolution of unity of the generalized coherent states
introduced by equation (34) by assuming the existence of a positive-definite weight function
wX(|z|2; q; as) so that∫

C

d2zwX(|z|2; q; as)|z; q; as〉XX〈z; q; as | = 1̂1 (40)

where the integral is taken over the entire complex plane. Inserting equation (36) into
equation (40) we find∫

C

d2zwX(|z|2; q; as)N 2
X(|z|2; q; as)

∞∑
m,n=0

{
z∗mzn

h
(X)∗
m (q; as)h

(X)
n (q; as)

}
|�n〉〈�m| = 1̂1. (41)

Using the orthonormality of the eigenstates |�n〉 and the polar form z ≡ reiφ, d2z = rdr dφ

in the diagonal matrix elements of (41), we can express the resolution of unity condition as∫ ∞

0
dρρnWX(ρ; q; as) = ∣∣h(X)

n (q; as)
∣∣2 where

WX(ρ; q; as) = πN 2
X(ρ; q; as)wX(ρ; q; as)

(42)

and ρ stands for r2. In other words, equation (42) provides the set of moments {ρn} of
the distribution function WX(ρ; q; as), since we assume all moments exist and have finite
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values. Therefore the problem of finding the measure wX(ρ; q; as) reduces to a Stieltjes
or a Hausdorff power-moment distribution problem [29]. Note that explicit computation of
wX(ρ; q; as) requires the knowledge of the spectrum {en; n = 1, 2, . . .} and the form of Z(q)

s .

4.5. Temporal stability

The time evolution of the generalized coherent state (36) can be obtained by |z; q; as; t〉X =
Û

(q)

X (t, 0)|z; q; as; 0〉X, where the time evolution operator fulfils the differential equation
ih̄ ∂

∂t
Û

(q)

X (t, 0) = Ĥ
(q)

X Û
(q)

X (t, 0), with the initial condition Û
(q)

X (0, 0) = 1̂1. Thus,

|z; q; as; t〉X = exp
{− iĤ

(q)

X t
/
h̄
}|z; q; as; 0〉X, and if we consider expansion (36) and the

results of equations (4) in this expression, we find

|z; q; as; t〉X = NX(|z|2; q; as)

∞∑
n=0

{
zn

h
(X)
n (q; as)

}
exp

{−i�ε(X)
n t

}|�n〉. (43)

To establish the temporal stability of |z; q; as; t〉X, we utilize the freedom in the
choice of the functional Z(q)

s to redefine the expansion coefficients as h̄(X)
n (q; as) =

h(X)
n (q; as) exp

{
iαε(X)

n

}
, where α is a real constant, ε(X)

n is given by (29) and h(X)
n (q; as)

still given by equation (37). In these conditions we rewrite the coherent state |z; q; as; 0〉X as

|z; q; as; 0〉X �⇒ |z, α; q; as; 0〉X = NX(|z|2; q; as)

×
∞∑

n=0

{
zn

h
(X)
n (q; as)

}
exp

{−iαε(X)
n

}|�n〉, (44)

and its time-evolved form as

|z, α; q; as; t〉X = NX(|z|2; q; as)

∞∑
n=0

{
zn

h
(X)
n (q; as)

}
exp

{−i (α + �t) ε(X)
n

}|�n〉

≡ |z, α + �t; q; as; 0〉X, (45)

showing that the time evolution of any such coherent state remains within the family of
coherent states.

4.6. Action identity

To verify that we take the conjugate of equation (35) and use the definition of the creation
operator X̂

(q)
+ to obtain X〈z; q; as |X̂(q)

+ = X〈z; q; as |z∗Z(q)∗
s−1 . Therefore with this result,

equation (35) and expression of Ĥ
(q)

X we can calculate the expectation value

〈
Ĥ

(q)

X

〉 = X〈z; q; as |Ĥ (q)

X |z; q; as〉X
X〈z; q; as |z; q; as〉X = h̄�

{
X〈z; q; as |X̂(q)

+ X̂
(q)
− |z; q; as〉X

X〈z; q; as |z; q; as〉X

}
= h̄�

∣∣zZ(q)

s−1

∣∣2.
(46)

Considering this result and defining a canonical action variable Jq = h̄β
(q)∗
s β

(q)
s , with

β
(q)
s = zZ(q)

s−1, we can write
〈
Ĥ

(q)

X

〉 = νJq, so that ν̇ = ∂
〈
Ĥ

(q)

X

〉/
∂Jq = � and thus

ν = �t + νo, as required for a couple of canonical conjugate action-angle variables. Note
that the normalized form (36) of the coherent state |z; q; as〉q implies that we must redefine
β

(q)
s = zZ(q)

s−1NX(|z|2; q; as−1)/NX(|z|2; q; as).
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5. Examples of coherent states for shape-invariant systems q-Deformed

Using the definition presented in the previous section we now illustrate the concept
of generalized coherent states for quantum deformed shape-invariant systems. In these
applications we consider the four different quantum deformed models presented in section 3
applied for the harmonic oscillator and the Pöschl–Teller potential systems.

5.1. Quantum deformed harmonic oscillator coherent states

We begin with this system because it is the simplest and most studied among the
shape-invariant potential systems. In this case the partner potentials V±(x) are obtained
with the superpotentials W(x, a1) = √

h̄� (βx + δ) , where β and δ are real constants,
while the remainders in the shape invariance condition (2) are given by [18] R(an) =√

h̄/(2M�)(an +an+1). Taking into account that the parameters for this potential are related by
a1 = a2 = · · · = an = β, then we conclude that the remainders can be written as R(an) = γ,

with γ = √
2h̄/(M�)β, and thus

en =
n∑

k=1

R(ak) = nγ. (47)

5.1.1. Standard q-deformed coherent states (X = B). In this case with (47) in (33) we
find �

(B)
nk = [γ (n − k)]q . Because of the constant values of the potential parameters for this

shape-invariant potential we must have Z(q)
s = Zq, a constant, which can be written in terms

of the q-parameter. Using this fact and �
(B)
nk in (37) we obtain

h(B)
n (q; as) =

√
qn(1 − q2)n(q2γ ; q2γ )n

q
1
2 γ n(n+1)Z2n

q

(48)

where the q2γ -shifted factorial (q2γ ; q2γ )n is defined as (p; qη)0 = 1 and

(p; qη)n =
n−1∏
s=0

(1 − pqsη), with n = 1, 2, 3, . . . . (49)

Therefore using the expansion coefficient (48) in (36) we obtain the normalized coherent state

|z; q; as〉B = 1√
E

(1/2)

q2γ (|ξq |2)

∞∑
n=0

{
q

1
4 γ n2√

(q2γ ; q2γ )n

}
ξn
q |n〉 where

ξq =
√

q
γ

2 (1 − q2)

q
zZq

(50)

and

E
(α)
qµ (z) =

∞∑
n=0

{
q

1
2 µαn2

(qµ; qµ)n

}
zn (51)

is the qµ extension of the one-parameter family of q-exponential functions [30] with α,µ ∈ 
and qµ < 1. Note that we took into account that in this case |�n〉 → |n〉, an element of the
Fock space {|n〉; n = 0, 1, 2, . . .}.
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To make clear the generality of our result several remarks are in order at this point.
• First, if we take the limit when q goes to unity of the expansion factor (48) we find

lim
q→1

{
h(B)

n (q; as)
} =

√
γ nn!

Zn
1

yielding

lim
q→1

|z; q; as〉B = exp

{
−
(
Z1|z|√

2γ

)2
} ∞∑

n=0

(Z1z√
γ

)n
√

n!
|n〉,

(52)

which is the generalized expression obtained in [22] for the coherent state of a non-deformed
harmonic oscillator. As pointed out there, if we redefine z → Z1z/

√
γ we obtain the usual

expressions by bosonic coherent state models [2].
• As a particular case of the generalized q-deformed coherent states (50) we can assume

that γ = 1 and Zq = 1 and thus, using the q-exponential function expq (z) defined in [31], we
obtain

|z; q; as〉B → |z; q〉 = 1√
expq (|z|2)

∞∑
n=0

zn√
[n]q!

|n〉, where expq (z) =
∞∑

n=0

zn

[n]q!

(53)

with [n]q! = [n]q[n−1]q . . . , [2]q[1]q . This result is the q-coherent state |z; q〉 first introduced
by Biedenharn [32] and used by Bracken et al [33] in their study involving a q-analogue of
boson operators and Bargmann space.

• On the other hand, with the choice of γ = 1
2 and Zq = √√

q/(1 + q) we get

|z; q; as〉B → |z〉q = 1√
exp√

q (|z|2)

∞∑
n=0

zn√
[n]√q!

|n〉, where now

exp√
q (z) =

∞∑
n=0

zn

[n]√q!

(54)

with [n]√q! = [n]√q[n − 1]√q . . . , [2]√q[1]√q and [n]√q ≡ (
q

n
2 − q− n

2
)/(

q
1
2 − q− 1

2
)
.

Expression (54) reproduce the |z〉q coherent state defined by Gray and Nelson [31] in their
paper about q-analogue coherent states for harmonic oscillator systems.

5.1.2. Standard Q-deformed coherent states (X = C). In this case inserting (47) into (33) we
get �

(C)
nk = [γ (n − k)]Q . In the same way, we must have Z(Q)

s = ZQ, a constant. Therefore

using this fact and �
(C)
nk in (37) we can show that

h(C)
n (Q; as) =

√
(Qγ ;Qγ )n

{√1 − QZQ}n (55)

where the Qγ -shifted factorial (Qγ ;Qγ )n has the same definition presented in (49), just
replacing q → Q. The expression of the normalized coherent state obtained substituting (55)
in (36) is

|z;Q; as〉C = 1√
expQγ

(|ξQ|2)
∞∑

n=0

ξn
Q√

(Qγ ;Qγ )n
|n〉, where

expQµ (z) =
∞∑

n=0

zn

(Qµ;Qµ)n

(56)

is the Qµ extension of the q-exponential function [34] with µ ∈  and Qµ < 1. In this case
ξQ = √

1 − QzZQ.
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Let us consider some remarks about this general result.
• As the previous example, it is easy to verify that the limit Q → 1 of (56) reproduce

the generalized expression obtained in [22] for the coherent state of a non-deformed harmonic
oscillator system.

• Taking the simple choiceZq = γ = 1 and using the relation [n]Q! = (Q;Q)n/(1−Q)n,
we obtain

|z;Q; as〉C → |z〉Q = 1√
expQ (|z|2)

∞∑
n=0

zn√
[n]Q!

|n〉 (57)

which is the math-type q-deformed coherent state constructed in [35].
• On the other hand, setting γ = 1, Zq = 1/

√
ω and identifying Q → q2 in the

generalized Q-deformed coherent states (56), we obtain the expression

|z;Q; as〉C → |z; q〉 =
√

(ξQ; q2)∞
∞∑

n=0

ξn
Q√

ωn[n]q2 !
|n〉 (58)

with [n]q2 ! = [n]q2 [n − 1]q2 . . . , [2]q2 [1]q2 and [n]q2 ≡ (1 − q2n)/(1 − q2), which is the
coherent state |z; q〉 built by Spiridonov [36] for a quantum deformed harmonic oscillator
potential. In this case, the parameter ω is related to the q-deformed commutation relation of
the ladder operators ââ† − q2â†â = ω.

5.1.3. Maths-type q-deformed coherent states (X = D). From (47) and (33) we obtain
�

(D)
nk = qγ (n−k−1) [γ (n − k)]q . Using this result and the constant value Z(q)

s = Zq in (37), we
find

h(D)
n (q; as) =

√
qn(1−γ )(q2γ ; q2γ )n

(1 − q2)nZ2n
q

. (59)

Using this result in (36) we obtain the normalized coherent state expression

|z; q; as〉D = 1√
eq2γ (|χq |2)

∞∑
n=0

χn
q√

(q2γ ; q2γ )n
|n〉 where

χq =
√

q(γ−1)(1 − q2)zZq .

(60)

In this case the qµ extension of the q-exponential function still given by expression (51)
changing Q → q.

As in the previous quantum deformed models next we consider some remarks about our
general results.

• Hence in the limit q → 1 the coherent state (60) reproduce the generalized expression
obtained in [22] for the coherent state of a non-deformed harmonic oscillator system, as in the
previous examples.

• Note that the math-type q-deformed coherent state |z〉q of [35] can be reproduced setting
γ = 1

2 and Zq = √√
q/(1 + q) in (60).

• Another thing to observe is that, as in the previous q-deformed model, with the same
choice of γ = 1 and Zq = 1/

√
ω in (60) we reproduce the coherent state |z; q〉 presented by

Spiridonov [36] for a quantum deformed harmonic oscillator potential.
Finally, in order to conclude these examples we must observe two aspects: (a) the

results found in the literature for harmonic oscillator q-deformed coherent states can be
reproduced as particular cases of our generalized formalism; (b) it is not possible to
define a q-deformed coherent state for X = S deformation model since for this potential
R(a0) = R(a1) = · · · = etc, and thus the shape invariance preservation condition (24) cannot
be satisfied.
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5.2. Quantum deformed Pöschl–Teller coherent states

The Pöschl–Teller potential [37], originally introduced in a molecular physics context,
is closely related to several other potentials widely used in molecular and solid
state physics. Besides that, the Pöschl–Teller potential presents the interesting
property of represents the infinite square-well as a special limit. The partners
potentials V±(x) for this system [18] are obtained with the superpotentials W(x, a1) =√

h̄� {β(a1 + γ ) cot [β(x + λ)] + δ csc [β(x + λ)]}, where β, γ , δ and λ are real constants while
the remainders in the shape invariance condition (2) are given by R(a1) = β2η [2(a1 + γ ) + η]
and the potential parameters are related by an+1 = an + η, with η = √

h̄/(2M�). Using these
facts we find that

en = κ2n(n + 2ρ), where κ = ηβ, ρ = (a1 + γ )/η. (61)

5.2.1. Standard q-deformed coherent states (X = B). In this case with (61) in (33) we find
�

(B)
nk = [κ2{n(n + 2ρ) − k(k + 2ρ)}]q and substituting this result in (37) we can show that

n−1∏
k=0

√
�

(B)
nk = q

1
3 κ2n(n+1)[n+ 3

2 (ρ− 1
6 )]

(q − q−1)n/2

√
(2κ2, 2ρ; q)n (62)

where we used the recurrence relation R(ak) = R(a1) + 2κ2(k − 1) and introduced the
two-parameters generalization of q-shifted factorial defined as (µ, a; q)0 = 1 and

(µ, a; q)n =
n−1∏
k=0

(1 − qµ[k(k+a)−n(n+a)]), with n = 1, 2, 3, . . . . (63)

In order to explore our general approach in the construction of q-deformed coherent states
let us to introduce some forms for the arbitrary functional Z(q)

s ≡ Z(q)(as) and verify their
consequences. First, assuming the constant value Z(q)

s = Zq and using it and (62) in (37), we
find for the coherent state (36)

|z; q; as〉B = 1√
E (q)

1,1 (2κ2, 2ρ; |ξq |2)

∞∑
n=0

{
q− 1

3 κ2n2[n+ 3
4 (2ρ+1)]√

(2κ2, 2ρ; q)n

}
ξn
q |n〉 where

ξq =
√

q − q−1

qκ2(ρ− 1
6 )

zZq (64)

and the q-deformed function E (q)
µ,σ (a, b; z) is defined as

E (q)
µ,σ (a, b; z) =

∞∑
n=0

{
q− µ

3 an2[n+ 3
4 (b+σ)]

(a, b; q)n

}
zn. (65)

Note that when Zq = κ , if we take the limit limq→1
{
h(B)

n (q; as)
} =√

�(n + 1)�(2ρ + 2n)/�(2ρ + n) and use this result in (64), we obtain

lim
q→1

|z; q; as〉B = |z; as〉 =
[ ∞∑

n=0

�(2ρ + n)

�(n + 1)�(2ρ + 2n)
|z|2n

]−1/2

×
∞∑

n=0

√
�(2ρ + n)

�(2ρ + 2n)�(n + 1)
zn|n〉. (66)
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Equation (66) is the generalized coherent state for non-deformed Pöschl–Teller potential
obtained in [22]. In this sense (64) can be assumed as the q-deformed version of the generalized
coherent state obtained in that reference.

On the other hand, assuming ρ = 1
2 , Zq = κ and taking the limit q → 1 it is possible to

get

lim
q→1

|z; q; as〉B = |z; as〉 =
√

sech(|z|)
∞∑

n=0

{
zn

√
(2n)!

}
|n〉 (67)

which is the simple expression found by Fukui in [14] for the Pöschl–Teller coherent states.
At this stage let us define an auxiliary function linear in the an-parameter gs ≡

g(c, d; as) = cas + d and its q-number version g
(q)
s ≡ g(q)(c, d; as) = [cas + d]q , where

c and d are constants. With the help of the an-potential parameters relation we can show that

n−1∏
k=0

g
(q)

s+k =
(

q−gs

q−1 − q

)n

q− 1
2 n(n−1)cη(q2gs ; q2cη)n. (68)

Now, as a second possibility, if we define the functional Z(q)
s =√

g(q)(2κ/η, κ; a1)g(q)(2κ/η, 2κ; a1) and use (68) we obtain

n−1∏
k=0

Z(q)

s+k =
(

q−κ(ν+ 1
2 )

q−1 − q

)n

q−κn2√
(q2κ(ν+1); q4κ )n(q2κ(ν+2); q4κ)n (69)

where ν = 2a1/η. Inserting equations (62) and (69) in (37) we obtain

h(B)
n (q; as) = (q − q−1)

n
2 qφ(n)

√
(2κ2, 2ρ; q)n

(q2κ(ν+1); q4κ )n(q2κ(ν+2); q4κ )n
(70)

where φ(n) = κn2
{

κ
3

[
n + 3

4 (2ρ + 1)
]

+ 1
}

+ κn
[

κ
2

(
ρ − 1

6

)
+ ν + 1

2

]
. Therefore the coherent

state (36) obtained with these results is

|z; q; as〉B = 1√
F

(q)

1,1(2κ, 2ρ, ν; |ξq |2)

∞∑
n=0

q−κn2{ 1
3 κ[n+ 3

4 (2ρ+1)]+1}

×
√

(q2κ(ν+1); q4κ)n(q2κ(ν+2); q4κ )n

(2κ2, 2ρ; q)n
ξn
q |�n〉 (71)

where ξq = q− 1
4 κ[κ(ρ− 1

6 )+2ν+1]z/
√

q − q−1 and the q-deformed function F
(q)
µ,σ (a, b, c; z) is

defined as

F
(q)
µ,σ (a, b, c; z) =

∞∑
n=0

q−an2{ 1
6 µa[n+ 3

4 (b+σ)]+1}
[

(qa(c+1); q2a)n(q
a(c+2); q2a)n

( 1
2a2, b; q)n

]
zn. (72)

Note that if we assume γ = η/2, take the limit limq→1
{
h(B)

n (q; as)
} =√

�(ν + 1)�(n + 1)/�(ν + n + 1) and use this result in (71) we obtain

lim
q→1

|z; q; as〉B = {1 − |z|2} 1
2 (ν+1)

∞∑
n=0

√
�(ν + n + 1)

�(ν + 1)�(n + 1)
zn|�n〉. (73)

Looking at (73) we recognize the coherent state of the Pöschl–Teller potential of first type
obtained in [38].
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5.2.2. Standard Q-deformed coherent states (X = C). In this case with (61) in (33) we find
�

(C)
nk = [κ2{n(n + 2ρ) − k(k + 2ρ)}]Q and substituting this result in (37) we can show that

n−1∏
k=0

√
�

(C)
nk = Qκ2n{ 2

3 n[n+ 3
4 (2ρ+1)]+ρ− 1

6 }

{Q − 1} n
2

√
(κ2, 2ρ;Q)n (74)

where we defined the Q version (µ, a;Q)n of the two-parameters generalization of q-shifted
factorial, obtained with the replacement of q → Q in (63). With the simple choiceZ(q)

s = ZQ,

a constant, in (74) and (37) we find for the coherent state (36)

|z; q; as〉C = 1√
E (Q)

4,1 (κ2, 2ρ; |ξQ|2)

∞∑
n=0


Q− 2

3 κ2n2[n+ 3
4 (2ρ+1)]√(

κ2, 2ρ;Q
)
n


 ξn

Q|�n〉 where

ξQ =
√

Q − 1zZQ

Qκ2(ρ− 1
6 )

(75)

and with the Q-deformed function E (Q)
µ,σ (a, b; z) defined as (65) just with the replacement of

q → Q.
It is worth emphasizing that, as in the X = B deformation model, from (75) it is possible

to get the results obtained in [22] and [14] in the limit of Q → 1 using the same conditions
assumed in those cases.

By using the same auxiliary linear function g(c, d; as) and introducing its Q-number
version g(Q)

s ≡ g(Q)(c, d; as) = [cas + d]Q, it is possible to verify that in this case
n−1∏
k=0

g
(Q)
s+k =

√
(Qgs ;Qcη)n

{1 − Q} n
2

. (76)

As a second choice, if we define the Q-version Z(Q)
s of the functional Z(q)

s introduced in the
previous case we obtain

n−1∏
k=0

Z(Q)
s+k =

√
(Qκ(ν+1);Q2κ)n(Qκ(ν+2);Q2κ)n

(1 − Q)n
. (77)

Thus inserting equations (74) and (77) in (37) we obtain

h(C)
n (Q; as) = (−i)n{1 − Q} n

2 Qφ(n)

√
(κ2, 2ρ;Q)n

(Qκ(ν+1);Q2κ)n(Qκ(ν+2);Q2κ)n
(78)

where φ(n) = 2
3κ2n

{
n
[
n + 3

4 (2ρ + 1)
]

+ ρ − 1
6

}
. The coherent state (36) obtained with these

results is

|z;Q; as〉C = 1√
F

(Q)
4,1 (κ, 2ρ, ν; |ξQ|2)

∞∑
n=0

Q− 2
3 κ2n2[n+ 3

4 (2ρ+1)]

×
√

(Qκ(ν+1);Q2κ)n(Qκ(ν+2);Q2κ)n

(κ2, 2ρ;Q)n
ξn
Q|�n〉 (79)

where ξQ = iQ− 2
3 κ2(ρ− 1

6 )z/
√

1 − Q and the Q-deformed function F
(Q)
µ,σ (a, b, c; z) is defined

as

F
(Q)
µ,σ (a, b, c; z) =

∞∑
n=0

Q− 1
3 µa2n2[n+ 3

4 (b+σ)]
[
(Qa(c+1);Q2a)n(Q

a(c+2);Q2a)n

(a2, b;Q)n

]
zn. (80)

It should be noted that the coherent state of the Pöschl–Teller potential of first type
obtained in [37] can be reproduced from (79) assuming γ = η/2 and taking the limit of the
expansion factor (78) when Q goes to unity.
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5.2.3. Maths-type q-deformed coherent states (X = D). In this case �
(D)
nk =

qκ2[n(n+2ρ)−(k+1)(k+2ρ+1)][κ2{n(n + 2ρ) − k(k + 2ρ)}]q and with this result in (37) we get

n−1∏
k=0

√
�

(D)
nk = q

2
3 κ2n[n(n+ 3

2 ρ)− 1
4 ]

{q − q−1} n
2

√
(2κ2, 2ρ; q)n. (81)

The coherent state (36) obtained with this result and the simple choice Z(q)
s = Zq will be the

form

|z; q; as〉D = 1√
E (q)

2,0 (2κ2, 2ρ; |ξq |2)

∞∑
n=0

{
q− 2

3 κ2n2(n+ 3
2 ρ)√

(2κ2, 2ρ; q)n

}
ξn
q |�n〉 where

ξq = q
1
6 κ2√

q − q−1zZq . (82)

On the other hand, with the same form of the previous model (X = C) for Z(q)
s we

find an expression for h(D)
n with the same form presented by equation (70) but with q power

argument now given by φ(n) = κn2
[

2
3κ
(
n + 3

2ρ
)

+ 1
]

+ κn
(
ν + 1

2 − 1
6κ
)
. The coherent state

(36) obtained in these circumstances has the form

|z; q; as〉D = 1√
F

(q)

4,0(2κ, 2ρ, ν; |ξq |2)

∞∑
n=0

q−κn2[ 2
3 κ(n+ 3

2 ρ)+1]

×
√

(q2κ(ν+1); q4κ)n(q2κ(ν+2); q4κ )n

(2κ2, 2ρ; q)n
ξn
q |�n〉 (83)

where ξq = q− 1
4 κ[2ν+1− 1

3 κ]z/
√

q − q−1.

5.2.4. Shape invariant q-deformed coherent states (X = S). Since for this potential the
remainders are related by R(an) = β2

(
a2

n+1 − a2
n

)
it is easy to verify that if we define the

preservation functional as Fq = qβ2a2
0 then condition (24) is satisfied because

q2R(a0)F2
q = q2β2(a2

1−a2
0 )q2β2a2

0 = q2β2a2
1 = T̂ (a1)F2

q T̂ †(a1). (84)

With Fq in (33) we get �
(S)
nk = q2β2a2

1 q(en+ek) [en − ek]q and using this result and (61) in (37)
we can show that

n−1∏
k=0

√
�

(S)
nk = qκ2n2(n+2ρ)qnβ2a2

1

{q − q−1} n
2

√
(2κ2, 2ρ; q)n. (85)

The coherent state (36) obtained with this result and the simple choice Z(q)
s = Zq has the form

|z; q; as〉S = 1√
E (q)

3,2ρ/3(2κ2, 2ρ; |ξq |2)

∞∑
n=0

{
q−κ2n2(n+2ρ)√
(2κ2, 2ρ; q)n

}
ξn
q |�n〉 where

ξq = q−β2a2
1

√
q − q−1zZq . (86)

As in the previous case, with the form defined in the X = C case for Z(q)
s we find an

expression for h(D)
n with the same form presented by equation (70) but with q power argument

now given by φ(n) = κn2 [κ (n + 2ρ) + 1] + κn
(
ν + 1

2 + β2a2
1

)
. Therefore the coherent state
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(36) obtained in this case is given by

|z; q; as〉S = 1√
F

(q)

3,2ρ/3(2κ, 2ρ, ν; |ξq |2)

∞∑
n=0

q−κn2[κ(n+2ρ)+1]

×
√

(q2κ(ν+1); q4κ)n(q2κ(ν+2); q4κ )n

(2κ2, 2ρ; q)n
ξn
q |�n〉 (87)

where ξq = q−[ 1
2 κ(2ν+1)+β2a2

1 ]z/
√

q − q−1.

6. Conclusions and final remarks

In this paper, using an algebraic approach, we constructed generalized coherent states
for primary shape-invariant systems quantum deformed with four different models. This
generalization based on the introduction of a factor functional Z(q)(as) of the potential
parameters in the coherent state definition (a) satisfies the set of essential requirements
we enumerated in the introduction to establish classical and quantum correspondence, (b)
reproduce, as particular cases, the results already known for q-deformed harmonic oscillator,
the only field explored until now in the construction of quantum deformed coherent states and
(c) gives several possible expressions for q-deformed coherent states obtained from primary
shape-invariant systems.

It should be noted that the known q-deformed functions are usually related with harmonic
oscillator quantum deformed models, where the factor en has a linear dependence on n.
However, the Pöschl–Teller potential, like most other shape invariant potentials, has a nonlinear
dependence on the quantum number n in its eigenvalue factor en. This fact requires the
introduction of additional q-deformed functions in the expressions of the generalized coherent
states for these potentials. In these new functions the deformation parameter q appears in the
power of quadratic functions in n. Since q < 1 there are no problems with the convergence of
the series representing these functions.

Another important ingredient of the generalized formalism developed here is the freedom
in the construction of q-deformed coherent states for primary shape-invariant systems. In
our applications we used very simple forms for the arbitrary functional Z(q)(as) while the
formalism permits the use of other expressions. Certainly this fact is a very relevant aspect
to be considered in the applications of the coherent states. On the other hand, the study of
quantum deformed extension of the shape invariant systems other than the harmonic oscillator,
as well as coherent states for these systems, is a very recent, and consequently, is an open field
to be explored further.
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